3 research outputs found

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging

    FSM-controlled architectures for linear invasion

    No full text
    Abstract—Invasive computing is a novel concept in multiprocessor architecture and programming. Invasion will become an important step towards self-organizing behavior which will be needed in the next generation of massively parallel MPSoCs with unrivaled performance and resource efficiency numbers as one of the main challenges for MPSoC apart from their programming. In this paper we introduce and model a finite state machine for controlling the invasive process in different architectural granularities. The applicability of our FSM is tested in case studies for a reconfigurable MPSoC platform and a fine-grained platform. The results show substantial flexibility gains with only marginal additional hardware cost

    Aging effects in FPGAs: an experimental analysis

    No full text
    International audienceModern Field Programmable Gate Arrays (FP-GAs) are built using the most advanced technology nodes to meet performance and power demands. This makes them susceptible to various reliability challenges at nano-scale, and in particular to transistor aging. In this paper, an experimental analysis is made to identify the main parameters and phenomena influencing the performance degradation of FPGAs. For that purpose, a set of controlled ring-oscillator-based sensors with different frequencies and tunable activity control are implemented on a Spartan-6 FPGA. Thus, the internal switching activities (SAs) and signal probabilities (SPs) of the sensors can be varied. We performed accelerated-lifetime conditions using elevated temperatures and voltages in a controlled setting to stress the FPGA. A novel monitoring method based on measuring the electromagnetic emissions of the FPGA is used to accurately monitor the performance of the sensors before and after the stress. The experiments reveal the extent of performance degradations, the impact of SPs and SAs, and the relative impacts of BTI and HCI aging factors
    corecore